
New Cloud Computing models
Supporting Society 5.0 Service
Integration

Andrea Sabbioni

Department of Computer Science and Engineering, DISI

University of Bologna, Italy

2

Society 5.0

"A human-centered society that balances economic advancement with the resolution
of social problems by a system that highly integrates cyberspace and physical space."

3

CONSUME

CREATEREUSE

Sustainable

• Integration of regenerative processes

• Sharing

• Reuse

• Repair

• Recycling

• Active in the development of circular processes

• Pay attention to resource consumption

4

• Decentralized and Distributed

• Sustainability and circular economy

• Adaptability

• Emergencies

• Evolution of technologies

Resilient

5

• Training investment asset
• Technology that adapts to the individual
• Hyper-personalized services and goods
• Safety
• Cultural and generational inclusiveness

Human factor

6

▪ Interconnect Businesses

▪ Seamless Inclusive Experience

▪ Efficiency

▪ Enhanced Data Driven Processes

▪ Collaborative Scaling

▪ Resource Wise

▪ Feedback

Cross Sector Integration in Society 5.0

7

Industry 5.0

• Symbiotic Relationship

• Workforce upskilling

• Workforce well being

• Technology Transfer and Cooperation

• Enviromental Responsability

8

Society 5.0 enabled Smart Cities

Society 5.0 evolves the Smart City concept by encouraging
cooperation among different sector stakeholders (e.g.,
Industry4.0, Smart Agriculture, Smart Grids…) to meet ambitious
goals of Sustainability and Resiliency.

Some challenges:

• A multitude of business case

• Heterogeneity in terms of requirements

• Multi-region and geo-distributed

• Integration with (resource constrained) actuators, sensors etc.

• Scale up and down depending on demand

9

Smart Tourism

* https://smarttourismcapital.eu/

10

Heterogeneous Data and Service Integration: The use case of Smart Tourism

Smart Tourism challenges for service and data Integration:
● A multitude of business case
● Heterogeneity in terms of requirements
● Multi-region and geo-distributed
● Integration with actuators, sensors etc.
● Scale up and down depending on demand

11

Microservice Integration in Society 5.0

Microservices decompose application into smaller,
services that interact with each other through loosely
coupled interfaces or APIs.

• Faster development

• Scaling

• Modularity

• Fault Isolation

• Technology flexibility

Distributed System Challenges

• Network reliability and capacity

• Dynamic topologies

• System as-a-whole observability

• Security concerns

12

Service Mesh

Service Mesh exploits a Proxy-based communication to
provide as an infrastructural layer:

• Same-Host Communication abstraction

• Traffic management

• Discovery

• Load Balancing

• Observability

• Metrics & Logs aggregation

• Service Interaction monitoring

• Resiliency

• Fault Recovery

• Circuit braking

• Security

13

Event Mesh

Event Mesh exploits a broker mediated message
exchange for Proxy-to-Proxy interactions

• Asynchronous service invocation

• Native Event Driven computation

• Location Transparent invocation

• Uncoupled interactions

• Different QoS

• Many-to-Many interaction

14

«A serverless architecture is a way to build and run applications and services without having to manage
infrastructure. Your application still runs on servers, but all the server management is done by AWS. You
no longer have to provision, scale, and maintain servers to run your applications, databases, and storage
systems.»

«Serverless computing is a method of providing backend services on an as-used basis. Servers are still
used, but a company that gets backend services from a serverless vendor is charged based on usage, not a
fixed amount of bandwidth or number of servers..»

[Amazon AWS team]

[Cloudflare]

«A Serverless solution is one that costs you nothing to run if nobody is using it.»

[Paul Johnston, AWS]

Serverless: some definitions

15

• Absence of control on scheduling and scaling logics

• No control on resources deployments

• Zero-Scaling (cost based on number of activations)

• Developer focuses only on business logic development

Key concepts

16

Function as a Service(FaaS)

Event-centric computing model where user-defined business logic (functions) is
triggered and dynamically instantiated by incoming events.

17

Cloud computing models

18

Serverless Computing: Function as a Service (FaaS)

Serverless Computing is a family of cloud computing models providing total abstraction over running Infrastructure

• Abstract from Infrastructure heterogeneity

• Managed Lifecycle

• Customer focuses on business logics

Function as a Service (FaaS) is a Serverless Cloud Computing model in which a function, representing the customer
defined logic, is automatically executed at the triggering of a specific event:

• General purpose model

• Event-driven

• Fine-grained scaling

• Built-in support to advanced features:

• Composition

• Event bridge pattern

19

Serverless Computing: Function as a Service (FaaS)

20

Data Persistence Layer [7]

Challenges:

• Many data sources and representations

• Different data storage technology coexisting

• Data ecosystem(s) integrating private/public
stakeholders to leverage networking effects

• Function ephemerality hinders standard
optimization mechanisms

Architecture principles:

• Message Oriented Middleware (MOM) to support
decoupled and asynchronous event distribution
among components

• Controller outside of function invocation chain

• Separates business logics from protocol-specific
implementations adopted by data storages

• Optimizations realized at the infrastructural layer

21

Data Persistence: Experimental Validation

Comparison between SPS supported FaaS environment vs. data operations executed Natively at the

business logic layer

Evaluation scenarios:

Constant-rate stream of requests for different chain lengths

Evaluate performance when operating on different data persistence technologies

N. Nodes Role CPU MEM O.S.

1 Traffic Generator 4-core i5-3470 10 GB Ubuntu 20.04

4 FaaS platform 4-core i5-3470 10 GB Ubuntu 20.04

22

Data Persistence: Test Results

Average end-to-end response latency, function execution time, and database operation latency of the various
configurations. The system is subjected to a constant load of 20 requests/second, assessing the performance
of an (a) read operation and a (b) create operation (log scale).

(a) (b)

23

End-to-end QoS Service Differentiation [2]

Challenges:

• CC includes regions with limited
computational resource availability

• Ephemerality of functions prevents
classical prioritization mechanisms

• Heterogeneous mechanisms exists
across the resources available in the CC

Architecture principles:

• End-to-end QoS Orchestration

• Abstracts from heterogeneous QoS
mechanisms available in the CC

• Abstracts complexities by offering
abstract quality levels FaaS workflows

24

End-to-end QoS Service Differentiation: Experimental Validation

Test capability of QoS layer in prioritize workloads execution on heterogeneous hardware

• In a regime condition

• Under heavy loads conditions

Prioritization mechanisms coordinated:

• Different Trigger instance in the Bridging Layer

• Time Sensitive Networking (TSN) and MOM queue prioritization in the Delivery Layer

• Separate Invoker instances and Linux Real Time Scheduler in the Processing Layer

Node Tag Model CPU Memory TSN driver

A Custom Workstation AMD Ryzen 3700X 8/16
Core

32 GB Intel I211

B Dell Optiplex Intel Core i5-3470 4/4
Core

10 GB -

C UP Core Plu()s Intel Atom E3950 4/4
Core

8 GB Intel I210

D,E UP Xtreme Intel Core i3-8145UE
2/4 Core

8 GB Intel I210

25

End-to-end QoS Service Differentiation: Experimental Reults

Zoom-in on end-to-end latency results showing
single contributions of TEMPOS components
(execution time) to the overall response times

Comparison of end-to-end latency averages for BQ
and SQ traffic executed when an increasing
number of messages/seconds (from 10 to 1000)
are submitted.

26

Distributed Function Composition [1]

Challenges:

• Composition coupled with business
logic in function

• Centralized coordination of
compositions

• Single Public cloud

Architecture principles:

• Distributed logic based on MOM
primitives

• Can exploit multiple MOMs deployed
in the CC

• Dynamic chains based on function
outputs

27

Distributed Function Composition: Experimental Validation

Test behavior of different MOMs in supporting event distribution and function composition under different workloads:

• End-to-End latency perceived

• System Throughput

Message Oriented Middleware considered:

• Apache Kafka

• Redis Stream

• Distributed Shared Memory Queue (DSMQueue)

Test Bed Characteristics: The experiments are conducted on two identical machines, each equipped with a 4-core i5-
3470 CPU @ 3.20GHz, 10GB RAM, running Ubuntu 20.04. The two nodes are directly interconnected by a 100Gbps
Mellanox ConnectX-6 DX NIC, which supports both standard Ethernet traffic and RDMA network.

28

Distributed Function Composition: Experimental Results

End-to-end latency under a linearly increasing workload.End-to-end function composition latency at a steady regime.

www.unibo.it

Q&A

Department of Computer Science and Engineering, DISI

University of Bologna, Italy

andrea.sabbioni5@unibo.it

Andrea Sabbioni

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16: Function as a Service(FaaS)
	Diapositiva 17: Cloud computing models
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29

